MachineLearning
단순 선형회귀 분석
forkballpitch
2022. 8. 31. 23:51
from sklearn.model_selection import KFold
from sklearn.linear_model import LinearRegression
linear_model_result = []
kf = KFold(n_splits = 5)
for idx, (trn_idx, val_idx) in enumerate(kf.split(train_x)):
train_x = np.array(train_x)
trn_x = train_x[trn_idx]
val_x = train_x[val_idx]
trn_y = train_y[trn_idx]
val_y = train_y[val_idx]
linear_model = LinearRegression()
linear_model.fit(trn_x, trn_y)
linear_model_result.append(linear_model.predict(linear_test))
print(idx)
linear_prediction = np.mean(linear_model_result, axis = 0)
linear_prediction